Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212). Total RNA was isolated from 64 filtered environmental water samples collected in the Columbia River coastal margin during 4 research cruises (14 from August, 2007; 17 from November, 2007; 18 from April, 2008; and 16 from June, 2008), and analyzed using microarray hybridization with the CombiMatrix 4X2K format. Microarray targets were prepared by reverse transcription of total RNA into fluorescently labeled cDNA. All samples were hybridized in duplicate, except samples 212 and 310 (hybridized in triplicate) and samples 336, 339, 50, 152, 157, and 199 (hybridized once). Sample location codes: number shows distance from the coast in km; CR, Columbia River transect in the plume and coastal ocean; NH, Newport Hydroline transect in the coastal ocean at Newport, Oregon; AST and HAM, Columbia River estuary locations near Astoria (river mile 7-9) and Hammond (river mile 5), respectively; TID, Columbia River estuary locations in the tidal basin (river mile 22-23); BA, river location at Beaver Army Dock (river mile 53) near Quincy, Oregon; UP, river location at mile 74.
Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212).
Project description:An Autonomous Underwater Vehicle (AUV) and large volume underwater pumps were used to collect microbial biomass from offshore waters of the Sargasso Sea, from surface waters and into the deep ocean. Seawater collection was performed along a transect in the western North Atlantic Ocean beginning near Bermuda and ending off the coast of Massachusetts, capturing metabolic signatures from oligotrophic, continental margin, and productive coastal ecosystems.
Project description:Physiological changes in response to environmental cues are not easily documented in pelagic copepods using traditional methods. Molecular biological tools provide new approaches to the investigation of difficult to sample organisms such as oceanic zooplankton. Here, we describe the development of a species-specific microarray for high-throughput studies of the physiological ecology of the North Atlantic copepod Calanus finmarchicus. An EST database was generated for this species using a normalized cDNA library derived from adult and sub-adult individuals from the Gulf of Maine. Sequence data were clustered into contigs and annotated using Blastx. Target transcripts were selected, and unique, 50 base-pair long, oligomer probes were designed and synthesized for 995 genes. Bioinformatic processing using Blast2GO software provided detailed information on gene function. The selected targets include a broad representation of biological processes, cellular components, and molecular functions. The microarray was tested on both experimental and ecological samples, i.e. food abundance and two morphotypes exhibiting distinct lipid stores, respectively. Differentially regulated transcripts were identified for both comparisons. Two comparisons were performed: 1) Lipid-rich (fat) and Lipid-poor (thin) morphotypes 2) Copepods kept under high food and low food experimental conditions