Project description:During granulocyte-macrophage colony-stmulating factor (GM-CSF) driven ex vivo myeloid differentiation of mouse hematopoietic stem/progenitor cells defined as Lineage negative cKit positive Sca-1 postive (LSK) cells, LSK cells after Cxxc5 knockdown makes more granulocytic cells than monocytic cells. To study this effect of Cxxc5 knockdown during myeloid cell differentiation, we performed a single-cell RNA sequencing of differentiating myeloid cells and analyzed the transcriptome of these cells.
Project description:Single-cell RNA sequencing was performed on bone marrow mononuclear of a patient with acute myeloid leukemia with erythroid differentiation of the blasts and on peripheral blood mononuclear cells of a patient with acute myeloid leukemia with megakaryocytic differentiation of the blasts. Raw data for this dataset can be found at the EGA under accession EGAS00001006819.
Project description:According to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)Flt3(hi)) and common myeloid progenitors (CMPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)CD41(hi)) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre-granulocyte-macrophage progenitor (pre-GM) (Lin(-)Sca-1(-)c-Kit(+)CD41(-)FcγRII/III(-)CD150(-)CD105(-)). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential.
Project description:Within the bone marrow, hematopoietic stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with the in vivo potential or gene regulatory mechanisms. Here we comprehensively identify myeloid progenitor subpopulations by transcriptional sorting of single cells from the bone marrow. We describe multiple progenitor subgroups showing unexpected transcriptional priming towards seven differentiation fates, but no progenitors with a mixed state. Transcriptional differentiation is correlated with combinations of known and previously undefined transcription factors, suggesting the process is tightly regulated. Histone maps and knockout assays are consistent with the transcriptional states while traditional transplantation experiments are only partially overlapping myeloid transcriptional priming. Our analyses uncover the function of the underlying regulatory mechanisms for several sub groups and establishes a general framework for dissecting hematopoiesis. Bone marrow Lin- cKit+ Sca1- myeloid progenitors mRNA profiles from single cells were generated by deep sequencing of thousands of single cells, sequenced in several batches in an Illumina NextSeq Please note that [1] raw data files were processed as single-ended file since second read (mate) files contain only cell/molecule barcodes and therefore, not provided. This information was appended to the fastq entry header [2] The 'experimental_design.txt' file explains the correspondence of each single cell (WXXXX) in the 'umitab.txt' to a sample (ABXXXX).
Project description:Leukemia arises from blockage of the differentiation/maturation of hematopoietic progenitor cells at different stages with uncontrolled proliferation of leukemic cells. However, the signal pathways that block cell differentiation remain unclear. Herein we found that SUMOylation of the M2 isoform of pyruvate kinase(PKM2), a rate-limiting glycolytic enzyme catalyzing the dephosphorylation of phosphoenolpyruvate to pyruvate, is prevalent in a variety of leukemic cell lines as well as primary samples from patients with leukemia through multiple-reaction monitoring based targeted mass spectrometry analysis. SUMOylation of PKM2 lysine 270(K270) triggered conformation change from tetrameric to dimeric of PKM2, reduced PK activity, and led to nuclear translocation of PKM2. SUMO1 modification of PKM2 recruits and promotes degradation of RUNX1 via a SUMO-interacting motif, resulting in blockage of myeloid differentiation of NB4 and U937 leukemia cells. Replacement of wild type PKM2 with a SUMOylation-deficient mutant (K270R) abrogated the interaction with RUNX1 and the blockage of myeloid differentiation in vitro and in xenograft model. Our results establish PKM2 as an essential modulator of leukemia cell differentiation and a potential therapeutic target which may offer synergistic effect with differentiation therapy in the treatment of leukemia.
Project description:Characterising the hierarchy of mammary epithelial cells (MECs) and how they are regulated during adult development is important for understanding how breast cancer arises. Here we report the use of single-cell RNA sequencing to determine the gene expression profile of MECs across four developmental stages; nulliparous, mid gestation, lactation and post involution. Our analysis of 23,184 cells identifies 15 clusters, few of which could be fully characterised by a single marker gene. We argue instead that the epithelial cells-especially in the luminal compartment-should rather be conceptualised as being part of a continuous spectrum of differentiation. Furthermore, our data support the existence of a common luminal progenitor cell giving rise to intermediate, restricted alveolar and hormone-sensing progenitors. This luminal progenitor compartment undergoes transcriptional changes in response to a full pregnancy, lactation and involution. In summary, our results provide a global, unbiased view of adult mammary gland development.
Project description:Haematopoietic stem cells can differentiate into all blood cell types. In this process, cells become progressively restricted to a single cell type. The order in which differentiating cells loose lineage potential, and the prospective isolation of cells with a defined potential remains a long-standing question. We performed gene expression analysis of haematopoietic cells from Gata1-EGFP reporter mice, leading to a model for hematopoiesis where the initial lineage decision consists of a seperation of erythroid/megakaryocyte/mast cell/eosinophil potential from lymphopoietic/monocyte/neutrophil potential Find unbiased heterogeneity in the preGM hematopoietic progenitor population
Project description:Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.