Project description:Drosophila melanogaster is a well-studied genetic model organism with several large-scale transcriptome resources. Here we investigate 7,952 proteins during the fly life cycle from embryo to adult and also provide a high-resolution temporal time course proteome of 5,458 proteins during embryogenesis. We use our large scale data set to compare transcript/protein expression, uncovering examples of extreme differences between mRNA and protein abundance. In the embryogenesis proteome, the time delay in protein synthesis after transcript expression was determined. For some proteins, including the transcription factor lola, we monitor isoform specific expression levels during early fly development. Furthermore, we obtained firm evidence of 268 small proteins, which are hard to predict by bioinformatics. We observe peptides originating from non-coding regions of the genome and identified Cyp9f3psi as a protein-coding gene. As a powerful resource to the community, we additionally created an interactive web interface (http://www.butterlab.org) advancing the access to our data.
Project description:Drosophila melanogaster is a well-studied genetic model organism with several large-scale transcriptome resources. Here we investigate 7,952 proteins during the fly life cycle from embryo to adult and also provide a high-resolution temporal time course proteome of 5,458 proteins during embryogenesis. We use our large scale data set to compare transcript/protein expression, uncovering examples of extreme differences between mRNA and protein abundance. In the embryogenesis proteome, the time delay in protein synthesis after transcript expression was determined. For some proteins, including the transcription factor lola, we monitor isoform specific expression levels during early fly development. Furthermore, we obtained firm evidence of 268 small proteins, which are hard to predict by bioinformatics. We observe peptides originating from non-coding regions of the genome and identified Cyp9f3psi as a protein-coding gene. As a powerful resource to the community, we additionally created an interactive web interface (http://www.butterlab.org) advancing the access to our data.
Project description:Embryo and adult flies infected with Wolbachia pipientis or cured were lysed in a SDS containing buffer and digested with trypsin using in gel digestion. The resulting peptides were injected on a Sciex Triple-TOF 6600 in SWATH-MS mode. The data were analysed using Spectronaut 10 using the spectral library published in Fabre et al, Proteomics, 2017.
Project description:Transcriptional analysis of dInR and dfoxo epistasis in Drosophila melanogaster. The experiment was performed to examine which parts of the transcriptional response to a reduction in insulin signalling in an adult female fly depend on the presence of the dfoxo transcription factor. Whole fly transcriptome was determined with flies over-expressing a dominant negative form of the insulin receptor, or the wild-type fly, in presence or absence of dfoxo.
Project description:This is an affymetrix array experiment comparing the transcriptome of the Malpighian tubule (or renal tubule) of 7-day adult Oregon R strain Drosophila melanogaster with matched whole fly samples. There are five tubule samples (each derived from approx 1000 tubules (!)), and 5 matched whole-fly samples. i.e. tubule 2 is dissected from the same vial as WholeFly2. As the tubule is probably the premier tissue for true physiology in Drosophila, the dataset can usefully be interrogated in conjunction with the detailed physiological understanding of the tissue: see http://fly.to/tubules
Project description:A spectral library was built for Drosophila melanogaster. The spectral library allows reproducible quantification for thousands of peptides per SWATH-MS analysis.
Proteins from Drosophila melanogaster embryo, adult flies were digested with trypsin using in-gel digestion and the peptides were fractionated by high-pH reverse phase chromatography. HRM peptides were spiked into the peptides mixture and each fraction was injected on a Sciex TripleTOF 6600 mass spectrometer fitted with microflow set-up.
The resulting .wiff files were analysed using MaxQuant and Spectronaut.
Project description:dFOXO targets in adult Drosophila melanogaster females, and the effect of insulin signalling and stress on binding. The experimets determined the binding locations of dFOXO in the whole adult female fly using ChIP-chip. The protocol was validated using mock conditions: pre-immune serum or IP on chromatin from foxo null flies. The response of this binding to stress induced by treatment of flies with paraquat or by their exposure to starvation, as well as the response to an insulin-signalling-reducing genetic manipulation (over-expression of dominant negative form of the insulin receptor), was determined.