Project description:Male Sprague-Dawley rats were used to establish exhausted-exercise model by motorized rodent treadmill. Yu-Ping-Feng-San at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Quantitative proteomics was performed for assessing the related mechanism of Yu-Ping-Feng-San.
Project description:n total, 16 7-week-old male F344 rats were subjected to model regular exercise and sedentary lifestyle. In the second week after arrival and acclimatization to the reversed light/dark cycle, rats were introduced to the forced running wheel without a specific running mode. It was followed by a 12-day training phase for all 16 experimental animals (started at 9 weeks of age) by gradually increasing the running speed and duration. During the training phase, 8 best performers were selected for the runner group while the remaining 8 rats were assigned to the sedentary group. The regular forced running exercise phase for the runner group lasted for 5 weeks in total, including 4 weeks of regular running. After 4 weeks of regular exercise, rats underwent brief anesthesia and of blood from the tail vein were taken. This step was repeated for the same animals immediately after 1h of running. On the same day, a blood sample was collected from the sedentary rats following the same protocol. Plasma was collected and immediately frozen for further EV isolation. EVs were isolated from rat plasma by size exclusion chromatography. RNA libraries were constructed using CleanTag® Small RNA Library Prep Kit (Trilink Biotechnologies, USA) and sequenced on Illumina NextSeq500 instrument using NextSeq 500/550 Mid Output Kit v2.5 (150 cycles).
Project description:Living organisms are intricate systems with dynamic internal processes. Their RNA, protein, and metabolite levels fluctuate in response to variations in health and environmental conditions. Among these, RNA expression is particularly accessible for comprehensive analysis, thanks to the evolution of high throughput sequencing technologies in recent years. This progress has enabled researchers to identify unique RNA patterns associated with various diseases, as well as to develop predictive and prognostic biomarkers for therapy response. Such cross-sectional studies allow for the identification of differentially expressed genes (DEGs) between groups, but they have limitations. Specifically, they often fail to capture the temporal changes in gene expression following individual perturbations and may lead to significant false discoveries due to inherent noise in RNA sequencing sample preparation and data collection. To address these challenges, our study hypothesized that frequent, longitudinal RNA sequencing (RNAseq) analysis of blood samples could offer a more profound understanding of the temporal dynamics of gene expression in response to drug interventions, while also enhancing the accuracy of identifying genes influenced by these drugs. In this research, we conducted RNAseq on 829 blood samples collected from 84 Sprague-Dawley lab rats. Excluding the control group, each rat was administered one of four different compounds known for liver toxicity: tetracycline, isoniazid, valproate, and carbon tetrachloride. We developed specialized bioinformatics tools to pinpoint genes that exhibit temporal variation in response to these treatments.
Project description:Array analysis of a set of 96 stress and toxicity genes was carried out in left ventricular cardiomyocytes from 8 control and 7 trained rats. The training protocol was very gradual and mild. Animals were sacrificed 48 hrs after the last training session in order to evaluate gene expression during the "second window of cardioprotection". Array results were validated by Real Time PCR of selected genes and Western Blot analysis of selected proteins. Plasma MDA and resistance to ischemia/reperfusion were evaluated as well. A total of 11 genes were found to be upregulated by moderate exercise, 3 to be downregulated. MDA was found to be increased in plasma of trained rats. Myocardial resistance to ischemia-reperfusion was found to be improved in trained rats with respect to controls. Results suggest that such a pattern of mild training does at the same time elicit stress responses, but also the upregulation of a number of defensive genes, that are likely to constitute the core of the adaptive mechanisms. Keywords: exercise training-related stress response and cardioprotection