Project description:Relapse of acute myeloid leukemia (AML) is still dramatically frequent, imposing the need for early markers to quantify such risk. Recent evidence point to a prominent role for extracellular matrix (ECM) in AML, but its prognostic value has not yet been investigated. Here we have investigated whether the expression of a 15-ECM gene signature could be applied to clinical AML research evaluating a retrospective cohort of 61 AML patients and 12 healthy donors. Results show that patients whose ECM signature expression is at least twice as that of healthy donors have considerably longer relapse-free survival, with further stage-specific therapy outcomes.
Project description:Acute myeloid leukemia (AML) is a clinically and genetically heterogeneous disease that has a poor prognosis. Recent advances in genomics and molecular biology have led to a greatly improved understanding of the disease. Until 2017, there had been no new drugs approved for AML in decades. Here, we review novel drug targets in AML with a focus on epigenetic-targeted therapies in pre-clinical and clinical development as well as the recent new drug approvals.
Project description:Myelodysplastic syndrome (MDS) is a clonal hematopoietic neoplasm characterized by bone marrow dysplasia, failure of hematopoiesis and variable risk of progression to acute myeloid leukemia (AML). Recent large-scale studies have demonstrated that distinct molecular abnormalities detected at earlier stages of MDS alter disease biology and predict progression to AML. Consistently, various studies analyzing these diseases at the single-cell level have identified specific patterns of progression strongly associated with genomic alterations. These pre-clinical results have solidified the conclusion that high-risk MDS and AML arising from MDS or AML with MDS-related changes (AML-MRC) represent a continuum of the same disease. AML-MRC is distinguished from de novo AML by the presence of certain chromosomal abnormalities, such as deletion of 5q, 7/7q, 20q and complex karyotype and somatic mutations, which are also present in MDS and carry crucial prognostic implications. Recent changes in the classification and prognostication of MDS and AML by the International Consensus Classification (ICC) and the World Health Organization (WHO) reflect these advances. Finally, a better understanding of the biology of high-risk MDS and the mechanisms of disease progression have led to the introduction of novel therapeutic approaches, such as the addition of venetoclax to hypomethylating agents and, more recently, triplet therapies and agents targeting specific mutations, including FLT3 and IDH1/2. In this review, we analyze the pre-clinical data supporting that high-risk MDS and AML-MRC share the same genetic abnormalities and represent a continuum, describe the recent changes in the classification of these neoplasms and summarize the advances in the management of patients with these neoplasms.
Project description:Acute myeloid leukemia (AML) with granulocytic sarcoma (GS) is characterized by poor prognosis; however, its underlying mechanism is unclear. Bone marrow samples from 64 AML patients (9 with GS and 55 without GS) together with AML cell lines PL21, THP1, HL60, Kasumi-1, and KG-1 were used to elucidate the pathology of AML with GS. RNA-Seq analyses were performed on samples from seven AML patients with or without GS. Gene set enrichment analyses revealed significantly upregulated candidates on the cell surface of the GS group. Expression of the adhesion integrin α7 (ITGA7) was significantly higher in the GS group, as seen by RT-qPCR (p = 0.00188) and immunohistochemistry of bone marrow formalin-fixed, paraffin-embedded (FFPE) specimens. Flow cytometry revealed enhanced proliferation of PL21 and THP1 cells containing surface ITGA7 in the presence of laminin 211 and stimulated ERK phosphorylation; this effect was abrogated following ITGA7 knockdown or ERK inhibition. Overall, high ITGA7 expression was associated with poor patient survival (p = 0.0477). In summary, ITGA7 is highly expressed in AML with GS, and its ligand (laminin 211) stimulates cell proliferation through ERK signaling. This is the first study demonstrating the role of integrin α7 and extracellular matrix interactions in AML cell proliferation and extramedullary disease development.
Project description:ObjectiveComputing patients' similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge.Materials and methodsIn this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods.ResultsIn the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data.DiscussionIn case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology.ConclusionThe better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine.
Project description:Acute myeloid leukemia (AML) cells can secrete trophic factors, including extracellular vesicles (EVs), instructing the stromal leukemic niche. Here, we introduce a scalable workflow for purification of immunomodulatory AML-EVs to compare their phenotype and function to the parental AML cells and their secreted soluble factors. AML cell lines HL-60, KG-1, OCI-AML3, and MOLM-14 released EVs with a peak diameter of approximately 80 nm in serum-free particle-reduced medium. We enriched EVs >100x using tangential flow filtration (TFF) and separated AML-derived soluble factors and cells in parallel. EVs were characterized by electron microscopy, immunoblotting, and flow cytometry, confirming the double-membrane morphology, purity and identity. AML-EVs showed significant enrichment of immune response and leukemia-related pathways in tandem mass-tag proteomics and a significant dose-dependent inhibition of T cell proliferation, which was not observed with AML cells or their soluble factors. Furthermore, AML-EVs dose-dependently reduced NK cell lysis of third-party K-562 leukemia targets. This emphasizes the peculiar role of AML-EVs in leukemia immune escape and indicates novel EV-based targets for therapeutic interventions.
Project description:Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy, characterized by the clonal expansion of myeloid blasts in the peripheral blood, bone marrow, and/or other tissues. The new drugs used for treating AML are facing a big challenge, and the candidates include cytotoxic drugs, targeted small-molecule inhibitors, and monoclonal antibodies. In recent years, active research has focused on several new agents for including them in the large antileukemic drug family. This review aims to introduce some of these new drugs and highlights new advances made in the old drugs, mainly in the last 5 years.
Project description:Significant progress has been made in the treatment of acute myeloid leukemia (AML). Steady gains in clinical research and a renaissance of genomics in leukemia have led to improved outcomes. The recognition of tremendous heterogeneity in AML has allowed individualized treatments of specific disease entities within the context of patient age, cytogenetics, and mutational analysis. The following is a comprehensive review of the current state of AML therapy and a roadmap of our approach to these distinct disease entities.
Project description:Acute myeloid leukemia (AML) is a genetically heterogeneous disease. Certain cytogenetic and molecular genetic mutations are recognized to have an impact on prognosis, leading to their inclusion in some prognostic stratification systems. Recently, the advent of high-throughput whole genome or exome sequencing has led to the identification of several novel recurrent mutations in AML, a number of which have been found to involve genes concerned with epigenetic regulation. These genes include in particular DNMT3A, TET2, and IDH1/2, involved with regulation of DNA methylation, and EZH2 and ASXL-1, which are implicated in regulation of histones. However, the precise mechanisms linking these genes to AML pathogenesis have yet to be fully elucidated as has their respective prognostic relevance. As massively parallel DNA sequencing becomes increasingly accessible for patients, there is a need for clarification of the clinical implications of these mutations. This review examines the literature surrounding the biology of these epigenetic modifying genes with regard to leukemogenesis and their clinical and prognostic relevance in AML when mutated.