Unknown

Dataset Information

0

Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations.


ABSTRACT: Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior.

SUBMITTER: Guenthner CJ 

PROVIDER: S-EPMC3782391 | biostudies-other | 2013 Jun

REPOSITORIES: biostudies-other

altmetric image

Publications

Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations.

Guenthner Casey J CJ   Miyamichi Kazunari K   Yang Helen H HH   Heller H Craig HC   Luo Liqun L  

Neuron 20130601 5


Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express  ...[more]

Similar Datasets

| S-EPMC110689 | biostudies-literature
| S-EPMC4354921 | biostudies-literature
| S-EPMC9744738 | biostudies-literature
| S-EPMC4101727 | biostudies-literature
2024-06-26 | GSE235987 | GEO
| S-EPMC3861134 | biostudies-literature
| S-EPMC4789767 | biostudies-literature
| S-EPMC5629338 | biostudies-literature
| S-EPMC3964285 | biostudies-literature
| S-EPMC6426292 | biostudies-literature