Project description:Comparison of expression of known 'iron' genes in liver, spleen and duodenum of C57BL/6J and SWR mouse strains which have low and high basal iron levels respectively.
Project description:A variety of human cell lines, were grown, RNA was extracted, and gene expression quantified using Affymetrix hgu133plus2 arrays. Expression of genes was compared to the rate of metabolism of the bioreductive prodrug PR-104A, and genes with expression shown to be statistically significantly correlated to pro-drug metabolic rate were chosen for further investigation.
Project description:The purpose of this study was to determine 1) the transcriptional program elicited by exposure to three estrogen receptor (ER) agonists: 17 a-ethynyl estradiol (EE), genistein (Ges) and bisphenol A (BPA) during fetal development of the rat testis and epididymis; and 2) whether very low dosages of estrogens (evaluated over five orders of magnitude of dosage) produce unexpected changes in gene expression (i.e., a non-monotonic dose-response curve). In three independently conducted experiments, Sprague-Dawley rats were dosed (s.c.) with 0.001-10mg EE/kg/day, 0.001-100 mg Ges/kg/day or 0.002-400mg BPA/kg/day. While morphological changes in the developing reproductive system were not observed, the gene expression profile of target tissues were modified in a dose-responsive manner. Independent dose-response analyses of the three studies identified 56 genes that are significantly modified by EE, 28 genes by Ges and 15 genes by BPA (out of 8740). Even more genes were observed to be significantly changed when only the high dose is compared with all lower doses: 141, 46 and 67 genes, respectively. Global analyses aimed at detecting genes consistently modified by all of the chemicals identified 52 genes whose expression changed in the same direction across the three chemicals. The dose-response curve for gene expression changes was monotonic for each chemical, with both the number of genes significantly changed and the magnitude of change, for each gene, decreasing with decreasing dose. Using the available annotation of the gene expression changes induced by ER-agonist, our data suggest that a variety of cellular pathways are affected by estrogen exposure. These results indicate that gene expression data are diagnostic of mode of action and, if they are evaluated in the context of traditional toxicological end-points, can be used to elucidate dose-response characteristics.
Project description:Evaluation and comparison of biological responses of rats and gene expression responses of the kidney in rats exposed to different doses of Puromycin [CAS:53-79-2;CHEBI:17939]
Project description:Influence of a wild type DNA Topoisomerase IB on global transcription profiles in exponentially growing S. cerecisiae cells in SC medium plus 2% of glucose.